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A new method is d iscussed  for  de termining  diffusion coeff icients  - the method of integral  
analogs.  This method makes  it poss ib le  to calcula te  diffusion coefficients  f r o m  expe r i -  
mental  r e su l t s  to higher accu racy  than exist ing methods .  

1 .  A n a l y s i s  o f  K n o w n  M e t h o d s  f o r  D e t e r m i n i n g  D i f f u s i o n  C o e f f i c i e n t s  

The bas i s  for  the de te rmina t ion  of diffusion coeff icients  is the pa r t i a l  di f ferent ia l  equation 
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The overwhelming major i ty  of methods involve the determinat ion of the concentra t ion as a function of 
the coordinates  and the t ime,  i .e. ,  e (x ,  t) depending on the initial and boundary conditions in the actual p rob -  
lem;  if e (x ,  t) is known it is easy  to de te rmine  the diffusion coefficient  D f rom the diffusion equation. 

A ve ry  l a rge  number  of paper s  have been devoted to the development  of methods based on using solu-  
tions of the above equation [1, 2]. But all these methods have se r ious  inherent  deficiencies:  low accuracy  
of the de te rmined  p a r a m e t e r s ,  difficulty in p roces s ing  exper imenta l  r esu l t s ,  need of a specia l  scheme  for  
expe r imen t s ,  etc.  The mos t  important  of these def ic iencies  is the low accuracy  of the de te rmined  diffusion 
coeff icient .  

Computational  fo rmulae  a r e  deduced f r o m  an idealized model and do not cover  complex eases  of dif-  
fusion. 

Occasional ly  it is comple te ly  imposs ib le  to de te rmine  the diffusion p a r a m e t e r s .  Thus, for  example ,  
there  a r e  no sa t i s f ac to ry  methods of de termining  va r i ab le  diffusion coeff ic ients .  

A genera l  method has been developed [3] for  de termining  the p a r a m e t e r s  of s y s t e m s  which can be 
descr ibed  by different ia l  equations,  the essence  of which is as follows. The original  different ial  equation 
is r ep laced  by its equivalent in tegral  equation for  the function i tself  (and not the leading der iva t ive ,  as in 
the genera l  theory of in tegral  equations).  The t e r m s  due to the nonzero initial and boundary values of the 
functions and their  der iva t ives  a re  el iminated a lgebra ica l ly .  In the equations of the s imples t  type these 
t e r m s  may be the initial and boundary values of the functions and their  de r iva t ives  themse lves :  A pa r t i cu l a r  
case  of the genera l  method [3] is the method of modulating functions [4]. The method of modulating functions 
is the mos t  highly developed of those now known and is of g r ea t e s t  in teres t  to us.  

2 .  T h e  O n e - D i m e n s i o n a l  D i f f u s i o n  E q u a t i o n  w i t h  C o n s t a n t  C o e f f i c i e n t s  

We consider  the s imples t  case  of one-d imens ional  diffusion, descr ibed  by Eq. (1), and to de te rmine  D 
f r o m  (1) we use  the method of modulating functions.  F rom the va r i ab les  in (1) we choose the modulating 
functions f(x) and r so that they sa t i s fy  the conditions: 

f (0) = [ (L) = f~ (0) = fx (L) = 0, (2) 

~0 (0) = ~ (T) = 0,  (3)  

where  (0, L) is the in terval  of observat ion  for  the x coordinate;  (0, T) is the in terval  of observa t ion  for  the 
t ime.  
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We multipy both sides of (1) by the modulating functions f(x) and ~(t) and by dx, dt 

L T T L ac j" a~c ~ ( x )  dx ~-~-~p(t) dt---- D 9(t) dt~--~x~ ,f(x) clx. 
0 0 0 0 

(4) 

If we make  the n e c e s s a r y  integrat ions,  we obtain an equation for  D 
L T  

;o;o c t (x) ~t ( ) dxd t  

D ~ - - L r  

" X ( ( c t,  ( ) (o d dt 
o 0 

(5) 

To de te rmine  the diffusion coefficient  f r o m  (5) we have to find the concentrat ion of the diffusing e l e -  
ment  e (x, t). When the diffusion p a r a m e t e r s  a re  de te rmined  exper imenta l ly  the concentrat ion c (x) is u sua l -  
ly obtained as a function of the coordinate  at some  moment  of t ime.  F rom these data and Newton's i n t e r -  
polat ing polynomial  [5] we can de t e rmine  the concentra t ion as  a function of the coordinate  and the t ime  in 
(5). For  example ,  the function can be wri t ten  as 

c (x, t) = ao + a~x + a~t + a3xt + a~x ~ + %t ~, (6) 

where  the a i (0 s i s 5) a r e  constants  de te rmined  by the actual  exper imenta l  functions c (x, to) for  fixed 
values of the t ime t o = eonst .  

The modulating functions in (5) can be chosen a rb i t r a r i l y ;  it is only n e c e s s a r y  that they sa t i s fy  (2) 
and (3). T h e s i m p l e s t  modulating functions a r e  

f~ (x) = sin~ ( L X ) , 

%(0 = s i n - -  n t ,  
T 

(7) 

f~ (x) = x , (x - L y ,  

% (t) = t (t  - -  T ) ,  
(s)  

where  
tion of the coordinate  and the t ime.  

If we take,  for  example ,  (8) as the modulating functions,  then using (6) again, we can obtain a s imple  
express ion  for  the constant  diffusion coefficient  f r o m  (5) 

D == ~ -}- aaL asT (9) 
-TYC , 

T and L a re  some fixed values of the t ime t and the coordinate  x, cal led the upper  l imi ts  of o b s e r v a -  

We sti l l  have to solve the p rob lem of the appropr i a t eness  of using integral  analogs of the diffusion 
equation to de te rmine  the diffusion coefficient  D. In fact ,  f r o m  (6), it is easy to de te rmine  the par t ia l  de-  
r iva t ives  

Z = J %  x ~d-~ , 

i, j=O 

2 

02c = Z 
Ox 2 i (i - -  1) a~ xt-e#, 

i ,  j=O 

(I0) 

(Ii) 

substi tut ion of which in the s imples t  diffusion equation (1) yie lds  

2 

i ( i  - -  1) a u x~-2# 
D = ~,i=o 

2 

Z ja u xtt i-x 
Lj=O 

(12)  
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and the p rob lem can be cons idered  as solved without any integrat ion of (1) or  the use  of (5). If, thus, we 
know the function c(x  i . . . .  , Xn, t), we can de te rmine  D not only without solving a boundary value p rob lem,  
but a lso  without fo rming  integral  analogs of the fo rm (5). But the known function c(x  i . . . .  , Xn, t) is ap -  
p rox ima te .  Equations (5) and (12), r e f e r r i n g  to the s a m e  diffusion p r o c e s s  a r e  not equivalent,  because  in 
one of them the diffusion coeff icient  is de te rmined  by integrat ing approx imate  functions , while in the other ,  
it is found by differentiat ion.  In the f i r s t  case  the e r r o r  is fa r  less  than in the second. 

Thus,  the ve ry  approach to the format ion  of the concentra t ion as a function of the independent va r i ab l e s ,  
which a s s u m e s  use  of exper imenta l  data, and hence is approximate ,  automat ica l ly  prevents  these approaches  
being identical  for  de te rmin ing  D, and f rom the point of view of the accuracy  of the solution of the p rob lem,  
yields  a dec is ive  advantage to the method of forming integral  analogs cor responding  to the diffusion equa-  
tion. 

3 .  D e t e r m i n a t i o n  o f  a V a r i a b l e  D i f f u s i o n  C o e f f i c i e n t  

We now show that the method of fo rming  the integral  analog of the cor responding  diffusion equation 
makes  it poss ib le  to solve the p rob lem of de te rmin ing  the diffusion coefficient  when the condition D = const  
does not hold. We consider  the equation 

c?c 0 ( D Oc I (13) 

and, mult iplying both s ides  of (13) by the modulating functions f(x) and q~(t), sa t i s fying (2) and (3), and also 
by dx, dr, we in tegra te  with r e s p e c t  to x and t f r o m  0 to L and 0 to I r e spec t ive ly  

L T  L T  

0 0 0 0 

(14) 

After  some  calculat ions we obtain 

L T  L T  j. 
0 0 0 0 

(15) 

Equation (15) is an integral  equation for  D, s ince D occurs  under  the sign for  double integrat ion.  

The d i rec t  solution of (15) is a complex p rob lem even when we know the concentrat ion as a function 
of the independent va r i ab l e s ,  i .e. ,  c (x ,  t). 

Because  of thei r  complexi ty  and the approx imate  nature  of c (x, t), the solution of in tegral  equations of 
the type (15) for  D have to be  sought approx imate ly ,  for  example ,  using an approximat ion  for  D(x,  t). Here ,  
however ,  the p ro b l em  is of quite a different  kind f r o m  that of the approx imate  function c (x, t), for  which we 
had information f r o m  exper iment .  In the case  when the function D ( x ,  t) is approximate ,  the p rob l em is dif-  
fe ren t  in that in this approximat ion  the va r i ab les  a r e  unknown, so that, for  example ,  if we approx imate  
us ing polynomials  in x and t, the constant  coeff icients  of these polynomials  a re  unknown. Having calculated 
an approx imate  express ion  for  D in (15) and evaluated the in tegra ls ,  we can obtain an a lgebra ic  equation 
for  the unknown coeff icients  in the expansion of D. Subsequently the a im is to obtain a s y s t e m  of equations 
for  these coeff ic ients .  This s y s t e m  can be obtained by an a r b i t r a r y  choice of the modulating functions f(x) 
and ~o(t), and a lso  by choosing the in tervals  of observa t ion  with sui table L and T. Indeed, we can choose 
any functions sa t is fying the conditions by requ i r ing  that they and their  f i r s t  n - 1 der iva t ives  a r e  zero  at 
the ends of the in tervals  of observa t ion ,  which, on substi tution in (15), will give, in conjunction with the ap-  
p r o x i m a t e  concentra t ion functions with known expansion coeff icients  and diffusion coefficient  with unknown 
expansion coeff ic ients ,  a lgebra ic  equations for  the expansion coeff icients  of D. There  a r e  as many a lgebra ic  
equations as unknowns. S imi lar ly  we can obtain a s y s t e m  of a lgebra ic  equations for  the unknown expansion 
coeff icients  of D by vary ing  the numer ica l  values  of the definite in tegra ls  as functions of the upper  l imits  
L and T of integrat ion,  i .e. ,  by choosing appropr ia t e  in tervals  of observat ion  for  the coordinate  and the t ime.  

We still  have to explain which va r i ab le s  we have to approx imate  in the diffusion coefficient .  It is gen-  
e ra l ly  accepted in the l i t e r a tu re  (see, e.g.,  [2, 6]) that D is a function of the concentra t ion c. 
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At the s ame  t ime,  both the concentrat ion and the diffusion coefficient a re  functions of independent 
va r iab les  - t h e  spat ia l  coordinates  and the t ime (this follows f r o m  the diffusion equation). Under ce r ta in  
conditions, which we shall  a s s um e  to hold, the functions 

D = D (c), (16) 

D = D (x, t) (17) 

a r e  r e l a t ed  in such a way that if we know (16), we can obtain (17) for  c = c (x, t), and converse ly .  Then 
it is fo rmal ly  a m a t t e r  of indifference which va r i ab les  we choose as independent for  D; e i ther  the concen-  
t ra t ion in the one case  or  the spat ia l  coordinates  and the t ime in the other .  Hence,  we shall  a s s u m e  the 
following rep resen ta t ions  poss ible :  

n 

D = D (c) = ~_b~c ~, (18) 
k=O 

D = D ( x ,  t ) =  ~ ahit~x k, (19) 
k,i=0 

where  the aki,  b k a re  unknown expansion coeff icients  and the choice of the approximat ion (18) or  0-9) is 
dictated by considera t ions  of s impl ic i ty  in calculat ing the defining in tegra ls  in the in tegral  analogs.  

We give an express ion  for  the diffusion coefficient  as a function of the coordinate  (D can be a s sumed  
to be  a function only of the coordinate  if the diffusion annealing is at constant  t empera tu re )  [7]. 

We s t a r t  f r o m  the diffusion equation (13) and wri te  the concentrat ion and diffusion coefficient  as 

c (x, t) : a o + a~x + a2t + a~xt + a~x ~ + ast 2, (20) 

D (x) = b o + blx + b~x 2. (21) 

Computing as above, we obtain the final express ion  

D (x) = a2 + asT a3 (2al + a3T) + a3 x. 
2aa 16a~ 4a~ 

(22) 

D 
C 

X 

t 
L 
T 

aki, b k 
G0, GI, �9 . . , G 5  

N O T A T I O N  

is the diffusion coefficient;  
is the concentrat ion;  
is the space  coordinate;  
is the t ime; 
is the in terval  of observa t ion  of coordinate;  
is the in terval  of observa t ion  of t ime;  
a r e  the expansion coefficients;  
a re  the coeff icients  in the expansion of the concentra t ion in x and t. 
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